SAMPLE PAPER- (unsolved)
 CHEMISTRY (Theory)
 Class - XII

Time allowed: 3 hours
Maximum Marks: 70

General Instructions:

a) All the questions are compulsory.
b) There are $\mathbf{2 6}$ questions in total.
c) Questions $\mathbf{1}$ to $\mathbf{5}$ are very short answer type questions and carry one markeach.
d) Questions $\mathbf{6}$ to $\mathbf{1 0}$ carry two marks each.
e) Questions $\mathbf{1 1}$ to $\mathbf{2 2}$ carry three marks each.
f) Questions 23 is value based question carrying four marks.
g) Questions 24 to 26 carry five marks each.
h) There is no overall choice. However, an interal choice has been provided in one question of
i) two marks, one question of three marks and all three questions in five marks each. You have
j) to attempt only one of the choices in such questions.

- Use of calculators is not permitted. However, you may use log tables if necessary.

1. Why a tetrahedral complex of the type [MA2B2] does not show geometrical isomerism?
2. What is the Van't Hoff factor for a compound which undergoes tetramerization in organic solvents?
3. Why all other vitamins of group P should be supplied regularly in a diet except for vitamin B12?
4. Give IUPAC name of the following compounds

5. Why o-nitrophenol has lower boiling point and lower solubility in water than its pisomer?
6. Write all the ionic reaction equation that occurs during rusting of iron. Suggest one method of controlling rusting of iron.
7. Calculate the mass of urea, NH 2 CONH 2 , required in making 2.5 kg of 0.25 molal aqueous solutions.
8. What is the effect on rate, if
a) Concentration of A is tripled.
b) Concentration of A and B is doubled.

9. An element has body centered cubic structure with unit cell edge length of 288 pm . Density of the element is $7.2 \mathrm{~g} / \mathrm{cm} 3$. How many atoms of the element would weigh 208 g ? Or

Aluminum crystallizes in cubic close packed structure. Its metallic radius is 125 pm .
a) What is the length of side of its unit cell?
b) How many unit cells would occur in 1.00 cm 3 of aluminum?
10. Differentiate the following pair of polymers:
(i) Novolac and Bakelite based on their structure
(ii) Buna -s and Terylene based on their intermolecular forces of attraction
11. What is semiconductor? Describe the two main types of semiconductors and explain mechanism for their conduction?
12. Calculate the depression in freezing point of water when 20.0 g of 32 CH CH CHClCOOH is added to 500 g of water.
13. Write the cell formulation and calculate the standard cell potential of the galvance cell in which the following reaction takes place.

$$
F e 2+(a q)+A g+(a q) \rightarrow F e 3+(a q)+A g(s)
$$

Calculate $\Delta \mathrm{rG}$ for the above reaction.
14. a) What happens when hydrogen sulphuric gas is passed through acidified potassium permanganate solution?
b) What is the effect of increasing pH of Cr 2 O 72 - solution? Write chemical reaction equations.
15. Classify synthetic detergents giving an example in each case.

Or

What are antihistamines? Give two examples. Explain how they act on the human body.
16. a. Write the mechanism involved in the reaction of an optically active compound having molecular formula C 7 H 15 Br with aqueous KOH to give a racemic mixture of products.
b. Why vinyl chloride is unreactive towards nucleophilic substitution reaction.
17. (i) Complete and name the following reactions:
(a) $\mathrm{RNH} 2+\mathrm{CHCI} 3+3 \mathrm{KOH} \rightarrow$
(b) $\mathrm{RCONH} 2+\mathrm{Br} 2+4 \mathrm{NaOH} \rightarrow$
(ii) Give chemical tests to distinguish between compounds in each of the following pairs:
(i) Phenol and Benzyl alcohol
(ii) Butane -2-ol and 2-Methyl propan - 2 -ol
18. a) What type of plot do you expect for rate Vs time for a zero by flame, it continues to burn?
b) Why coal does not burn by itself in air but-once initiated by flame, it continues to burn.
19. a) How does zinc help in the recovery of silver from its ore?
b) If the value of $\Delta \mathrm{fG} 0$ for the formation of Cr 2 O 3 is $-540 \mathrm{Kj} / \mathrm{mol}$ and that of Al 2 O 3 is $827 \mathrm{KJ} / \mathrm{mol}$, how is the reduction of Cr 2 O 3 possible with Al ?
20. How are the following conyersions carried out?
a. Ethylcyanide to ethanoic acid
b. Butan-1-ol to butanoic acid
c. Benzoic acid to m-bromobenzoic acid
21. Describe the following giving one example for each
a. Detergents
b. Food Preservatives.
c. Antacids
22. Write the following name reaction with one suitable example.
a. Gabriel Phthalimide Reaction
b. Hofmann Bromamide Reaction
23. The term Green chemistry as adopted by the IUPAC working party on synthetic pathways and process in green chemistry is getting awareness even among the common people. My father who retired twenty years ago was working with a laboratory synthesizing aldehydes using.

Myself, working in the same Lab adopted this method but my father advised not to use this method and suggested another one. Answer the following question based on the above passages a . Why did my father advise not to use given method?
b. What was another method? Did you consider it to be environment friendly or economically?
24. a) Write the cell reaction involved in recharging of lead storage battery.
b) Write the Nernst equation and emf of the following cells at $298 \mathrm{~K}(\mathrm{E} 0 \mathrm{Fe} 2+/ \mathrm{Fe}=-$ 0.44 V)
$\mathrm{Fe}(\mathrm{s}) / \mathrm{Fe} 2+(0.001 \mathrm{M}) / / \mathrm{H}+(\mathrm{IM}) / \mathrm{H} 2(1$ bar $) / \mathrm{Pt}(\mathrm{s})$.
c) How much electricity in terms of Faraday is required to produce 40.0 g of Al from molten Al2O3?

Or

a) In a chemistry lab, if a student stores CuSO 4 solution in a Zn vessel, what will happen? Why?
b) State two advantage of $\mathrm{H}_{2}-\mathrm{O}$ 2 fuel cell over ordinary cell.
c) State Kohlrasusch's staw.
d) In the button cells widely used in watches and other devices the following reaction takes place: $\mathrm{Zn}(\mathrm{s})+\mathrm{Ag} 2 \mathrm{O}(\mathrm{s})+\mathrm{H} 2 \mathrm{O}(\mathrm{l}) _\mathrm{Zn} 2+(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s})+2 \mathrm{OH}-(\mathrm{aq})$ Determine $\Delta \mathrm{r}$ G0 and EO for the reaction.

Assume: $\mathrm{E} 0 \mathrm{Zn} 2+/ \mathrm{Zn}=-0.76 \mathrm{~V}$ and $\mathrm{E} 0 \mathrm{Ag}+/ \mathrm{Ag}=0.8 \mathrm{~V}$.
25. a) An organic compound with the molecular formula C 9 H 10 O forms2,4-DNP derivative, reduces Tollens reagent and undergoes cannizzaro reaction. On Vigorous oxidation, it gives 1,2 benzene dicarboxylic acid. Identify the compound and give equation.
b) Bring out the following conversion:
i) 4-Methyl acetophenone to Terephethalic acid
ii) Zcylohexene to adipic acid
a) Explain the following
i. Etard reaction
ii. Hell - Volhard Zelinsky reaction
iii. Clemmensen reduction
b) Which acid of each pair shown here would you expect to be stronger?
(i) CH 3 COOH or CH 2 F OOOH
(ii) CH 2 FCOOH or CH 2 ClCOOH
(i) CH 2 FCH 2 CH 2 COOH or CH 3 CHFCH 2 COOH
(ii)

26. a) Calculate the equilibrium constant for the reaction:
$\mathrm{Cd} 2+(\mathrm{aq})+\mathrm{Zn}(\mathrm{s}) ® \mathrm{Zn} 2+(\mathrm{aq})+\mathrm{Cd}(\mathrm{s})$ if $\mathrm{E} 0 \mathrm{Cd} 2+/ \mathrm{Cd}=-0.403 \mathrm{~V}$ and $\mathrm{E} 0 \mathrm{Zn} 2+/ \mathrm{Zn}=-$ 0.763 V
b) When a current of 0.75 A is passed through a CuSO 4 solution for $25 \mathrm{~min}, 0.369 \mathrm{~g}$ of copper is deposited at the cathode. Calculate the atomic mass of copper.
c) Tarnished silver contains Ag2S. Can this tarnish be removed by placing tarnished silverware in an aluminum pan containing an inert electrolytic solution such as NaCl , if the standard electrode potential for half reaction: $\mathrm{Ag} 2 \mathrm{~S}(\mathrm{~s})+2 \mathrm{e} _2 \mathrm{Ag}(\mathrm{s})+\mathrm{S} 2-\mathrm{is}-0.71 \mathrm{~V}$ and for $\mathrm{Al} 3++3 \mathrm{e} _\mathrm{Al}(\mathrm{s})$ is -1.66 V .

Or
a) Calculate the standard free energy change for the following reaction at 250 C
$\mathrm{Au}(\mathrm{S})+\mathrm{Ca} 2+(\mathrm{aq}, 1 \mathrm{M}) _\mathrm{Au} 3+(\mathrm{aq}, 1 \mathrm{M})+\mathrm{Ca}(\mathrm{S})$
$\mathrm{EO} \mathrm{Au} 3+\mid \mathrm{Au}=+1.50 \mathrm{~V}$
$\mathrm{E} 0 \mathrm{Ca} 2+\mid \mathrm{Ca}-=-2.87 \mathrm{~V}$
Predict whether the reaction will be spontaneous or not at 250C. Which of the above two half cells will act as an oxidizing agent and which one will be a reducing agent?
a) The conductivity of 0.001 M acetic acid is $4 \times 10-5 \mathrm{~S} / \mathrm{cm}$. Calculate the dissociation constant of acetic acid, if Am0 for the acetic acid is $390.5 \mathrm{~S} \mathrm{~cm} 2+/ \mathrm{mol}$.

