CBSE SAMPLE PAPER

SECOND PRE-BOARD EXAMIANTION

CLASS - X MATHEMATICS

[M. M.: 80]

General Instructions:
(1) All questions are compulsory.
(2) The question paper consists of 30 quesitons divided into 4 sections.
(3) Section A comprises of 10 questions of 1 mark each.

Section B Comprises of 5 questions of 2 marks each. Section C comprises of 10 questions of 3 marks each. Section d comprises of 5 questions of 6 marks each.
(4) There is no overall choice. However internal choice has been provided in 1 question of 2 marks, 3 questions of 3 marks each and 2 questions of 6 marks each.
(5) In questions of construction, drawing should be neat and exactly as per the given requirement

Q1. If $\sec \theta=\frac{5}{4}$, then find the value of $\frac{\tan \theta}{1+\tan ^{2} \theta}$.
Q2. State the Fundamental theorem of Arithmetic.
Q3. The sum and product of the zeroes of a quadratic polynomial $-1 / 3$ are and -2 respectively.

What is the quadratic polynomial?
Q4. If the adjoining figure is a sector of a circle of radius 10.5 cm , find the perimeter of the sector.
(Take $\pi=22 / 7$)

Q5. In the adjoining figure, PA and PB are tangents from a point P to a circle with centre 0 and are inclined at an angle of 80°. Find $\angle \mathrm{POA}$.

Q6. Give an example of
polynomials $\mathrm{f}(\mathrm{x}), \mathrm{g}(\mathrm{x}), \mathrm{q}(\mathrm{x})$
and $r(x)$ satisfying $f(x)=$
$\mathrm{g}(\mathrm{x}) . \mathrm{q}(\mathrm{x})+\mathrm{r}(\mathrm{x})$
where degree of $r(x)=0$
Q7. Write the empirical relationship between the three measures of central tendency.
Q8. Which term of the AP
$121,117,113$ \qquad is its first negative term?

Q9. A vertical pole of length 6 m casts a shadow 4 m long on the ground and at the same time a tower casts a shadow 28 m long. Find the height of the tower.

Q10. A student draws a cumulative frequency curve for the marks obtained by 60 students of a class as shown below. Find the median class marks obtained by the students of the class.

Q11. Find the solution for the pare of equations:
$\frac{3}{x}+\frac{8}{y}=1, \frac{1}{x}-\frac{3}{y}=2, x, y \neq 0$
Q12. Find the sum of first 51 terms of an AP whose second and third terms are 14 and 18 respectively.

Q13. Check whether $(-2,5),(3,-4)$ and $(7,10)$ are the vertices of an isosceles right triangle.
Q14. Evaluate:

$$
\frac{5 \cos ^{2} 60^{\circ}+4 \sec ^{2} 30^{\circ}-\tan ^{2} 45^{\circ}}{\sin ^{2} 30^{\circ}+\cos ^{2} 30^{\circ}}
$$

Q15. $A B C D$ is a trapezium in which $A B \| D C$ and its diagonals intersect each other at the point 0 .
show that

$$
\frac{A O}{B O}=\frac{C O}{D O}
$$

OR
Two tangents TP and TQ are drawn to a circle with centre 0 from an external point T. Prove that $\angle \mathrm{PTQ}=2 \angle \mathrm{OPQ}$
SECTION - C

Q16. Find all the zeroes of $2 x^{4}-3 x^{3}-3 x^{2}+5 x-2$, if two of its zeroes are and $\sqrt{2}$ and $-\sqrt{2}$.

Q17. Find HCF and LCM of 336 and 54 by prime factorization and verify that $\mathrm{HCF} \times \mathrm{LCM}=$ product of the two numbers.

OR
Show that any positive add integer is of the form $6 q+1$, or $6 q+3$ or $6 q+5$, where q is some integer.
Q18. A jar contains 24 marbles, some green and other blue. If a marble is drawn at random from the jar, the probability that it is green is $2 / 3$. Find the number of blue marbles in the jar. Q19. Prove that
$(\operatorname{cosec} A-\sin A)(\sec A-\cos A)$

Q20. A motorboat whose speed is $18 \mathrm{~km} / \mathrm{hr}$ in still water takes 1 hour more to go 24 km upstream than to return downstream to the same point. Find the speed of the steam.

Q21. If points A and B are $(-2,-2)$ and $(2,-4)$ respectively, fin the coordinates fob P such that $\mathrm{AB}_{3}=$
${ }_{7} \mathrm{AB}$ and P lies on the line segment AB .
7

Q22. The three vertices of a triangle are ($-5,-1$), (3, k), (5, 2). Find the K if area of a triangle is 32 square units.

Q23. Construct a triangle ABC with side $\mathrm{BC}=7 \mathrm{~cm}, \angle \mathrm{~B}=45^{\circ}, \mathrm{C}=\angle 30^{\circ}$. Then construct a triangle
whose sides are $4 / 3$ - times the corresponding sides for triangle ABC.

Q24. Find the area of a shaded region in the given figure where. $A B$ and $C D$ are diameters of a circle with center 0 perpendicular to each other and OD is the diameter of the smaller circle such that $0 A=7 \mathrm{~cm}$.

OR
A well of diameter 3 m is dug 14 m deep. The earth taken out of it has been spread evenly all around it in the shape of circular ring of width 4 m to form an embankment. Find the height of the embankment.
Q25. In an equilateral triangle $A B C, D$ is s point on sides $B C$ such that $B D=1 / 3 B C$. Prove that $9 A D^{2}=7 A^{2}$.

Q26. Solve the following system of linear equations graphically:
$3 x-4 y+6=0$
$3 x+y-9=0$
Shade the region bounded by these lines and the x - axis.
Also find the ratio of areas of triangles formed by given liens with $x-$ axis and $y-$ axis.

Q27. The shadow of a vertical tower standing on a level increases by 40 meters, when the altitude of the sun changes from angle of elevation 60 o to 30 o . Find the height of the tower.

OR
The angles of elevation of the top of a tower from two points at distance a and b meters form the base and in the same straight line with it are complementary.
Prove that the base and of the tower is $\sqrt{a b}$ meters.

Q28. Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.
In given figure. PB and QA are perpendicular to segment AB such that $\mathrm{PO}=5 \mathrm{~cm}, \mathrm{QO}=$ 7 cm and area $(\triangle \mathrm{POB})=150 \mathrm{~cm}^{2}$, using above theorem, find the area of triangle QOA.

Q29. An open metallic bucket is in the shape of a frustum of a cone mounted on hollow cylindrical base made of metallic sheet. If the diameters of the two circular ends of the bucket are 45 cm and 25 cm , the total vertical height of the bucket is 30 cm and that of the cylindrical portions is 6 cm .
find the area of metallic sheet used to make the bucket. Also find the volume of the water it can hold.

OR

A solid is in the form for cylinder with hemispherical ends. The total of the solid is 108 cm and the diameter of the hemispherical ends is 36 cm . find the cost of polishing the surface of the solid at there rate of 7 paise per sq.cm.

Q30. The following table shows s the marcs obtained by 100 students of class X in a school during a particular academic session. Find the mode of theis distribution.

